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Abstract-The problem of laminar boundary-layer flow and heat transfer over a long thin cylinder in 
uniform flow has been analyzed. Solutions are obtained for small as well as large values of the curvature 
parameter. Solutions valid for small values of curvature are extended to apply to in ermediate values of 
curvature as well. This is done by casting the expressions into fractions. Finally, these fractions are joined 
with the asymptotic solution to produce heat-transfer and skin friction results for all values of the curvature 

parameter. The shapes of the velocity and temperature profiles are given graphically. 
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NOMENCLATURE 

see equation (65) and Table 2; 
see equation (60) ; 
see equation (65) and Table 2; 
see equation (39) ; 
see equation (38); 
see equation (65) and Table 2 ; 
see equation (39) ; 
see equation (38); 
see equation (10) ; 
asymptotic stream function ; 
see equation (30) ; 
see equation (11) ; 
see equations (54,55) and Table 2; 
thermal conductivity ; 
an integer ; 
an integer ; 
local heat flux ; 
local heat flux for zero curvature ; 

average heat flux = l/x $, q(x) d.x ; 

average heat flux for zero curvature ; 
distance from the axis of cylinder; 
cylinder radius ; 
dimensionless temperature (asymptotic 
solution) ; 
see equation (31); 
fluid temperature ; 
fluid temperature outside the layer ; 

1757 

T 
w-3 

uniform wall temperature ; 

u, velocity component in x-direction; 
u*, dimensionless u, see equation (5) ; 
u, uniform main stream velocity; 

u, velocity component in r-direction ; 

v*, dimensionless u, see equation (5); 
X, distance along cylinder axis ; 
7 dimensionless transverse coordinate, 

see equation (26). 

Greek symbols 
see equation (26) ; 
Euler’s constant Oe5772157.. . ; 
true displacement thickness 

(6 + R)’ - RZ = 2 [(l - u/U)rdr; 

dimensionless transverse coordinate, 
see equation (5) ; 
dimensionless temperature, see equa- 
tion (5) ; 
see equation (12) ; 
fluid viscosity ; 
kinematic viscosity ; 
the curvature parameter, see equation 

(5) ; 
Prandtl number ; 
local skin friction ; 
local skin friction for zero curvature ; 
average skin friction ; 
average skin friction for zero curvature. 
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1. INTRODUCTION 

THE PROBLEM of flow in the axial direction over 
the outer surface of a cylinder represents an 
example where an ordinarily second-order effect 
becomes of primary significance. The strong 
existence of transverse curvature in this flow 
justifies ignoring all other second order effects 
such as that of the displacement speed (see for 
instance Van Dyke [ 11). 

Extensive work on the flow aspects of this 
problem may be found in the literature. Seban 
and Bond [2] obtained a series solution valid 
for small values of the curvature parameter. The 
solutions given by Seban and Bond together 
with the numerical corrections of Kelly [3] 
constitute the extent of the literature dealing 
with solutions valid for small values of the 
curvature parameter 5 = (vx/UR*)* where v is 
the kinematic viscosity, x the distance along the 
cylinder, U the velocity of the uniform stream 
and R the radius of the cylinder. The Seban- 
Bond-Kelly solution for skin friction which 
applies to about r = 0.2 already shows a strong 
influence of c on the skin friction. 

The flow behaviour for large values of 5 is 
discussed by Batchelor [4] on the basis of 
analogy to a transient conduction problem 
solved by Rayleigh [5]. A more systematic 
approach is given by Stewartson [6] who 
expands the flow quantities in terms of descend- 
ing powers of log (4l*/O) where D is a number 
whose natural logarithm is the Euler number. 
Glauert and Lighthill [7] finally resolve the 
flow problem by first obtaining a fairly accurate 
solution by integral technique (good for all 
values of 5). They then connect the Seban-Bond- 
Kelly solutions with their own asymptotic 
solutions. The interpolation is arrived at by 
inspection, using the integral solution as a guide. 

Although a two term expansion for heat- 
transfer quantities is given by Seban and Bond 
for a Prandtl number of 0.715, an exact and 
comprehensive treatment of the temperature 
problem remains apparently nonexistent. 

The present work consists of series solutions 
obtained for small values of 5 and Prandtl 

numbers of 0.7, 1 and 10. The method used here 
is slightly different from that given by Seban 
and Bond. Furthermore an asymptotic solution 
is derived for the flow and heat-transfer quanti- 
ties in a manner similar to one given by Glauert 
and Lighthill. The method does not require 
numerical integration and therefore the heat- 
transfer results may be calculated for any 
Prandtl number. The small r solutions for skin 
friction and heat transfer are cast into fractions 
and joined with the asymptotic series at appro- 
priate values of <. This leads to fairly simple 
expressions for skin friction and heat transfer 
valid for all values of 5. 

Finally a finite difference solution generated 
up to 5 = 4 provides information on the shapes 
of the velocity and temperature profiles which 
should be of qualitative interest. 

2. FORMULATION OF THE PROBLEM 

Designating x as the axis of the circular 
cylinder and r as the radial coordinate, the 
governing boundary-layer equations with the 
inclusion of transverse curvature can be written 

as, 

(3) 

where u and v are velocity components in x and 
r directions respectively, T is the fluid tempera- 
ture and CJ the Prandtl number. 

The boundary conditions are, 

u(x, R) = v(x, R) = 0; u(x, co) = u 

T(x, R) = T, ; T(x, cc) = Tl. (4) 

Here T,,, is the uniform wall temperature and Tl 
the temperature of the main stream. 

The above equations assume constant proper- 
ties, zero pressure gradients and negligible 
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viscous dissipation. The assumption of zero subject to the boundary conditions, 

pressure gradient is of course not valid, in u*(<,O) = u*({,O) = 0; u*(& co) = 1 

general, near the nose region (x = 0) but should 
@LO) = 1; eg, co) = 0. (9) 

be a reasonable one a few diameters down- 
stream-as long as no flow separation occurs. 

Here subscripts denote differentiation. Assume 

A curvature parameter 5 is now defined which 
next the following series representation of 

is similar to the ones given by the previous 
velocities and temperature : 

workers, namely a quantity proportional to the u* = f;;(V) + 5fXt7) + 52fXrl) + . . . (10) 
ratio of flat plate boundary-layer thickness to 
the cvlinder radius. 

I 

u* = MI) + 5SI(rl) + t2s2(rl) + ‘.. (11) 

e = eo(49 + 5wd + 52e2(d + 
Equation (7) is satisfied to 0(Y3) when 

go = rlfb: - fb 
The parameter < represents the extent of 
curvature present in the flow but not uniformly 

91 = rlf;r - 2.G - rlfb + 2fo 

‘. (12) 

(13) 

(14) 

for all x since the growth of the layer will in g2 = rlf; - 3f2 - ?f; + 3.G + V’fb - WO. 

fact be slower than x*. (15) 

3. SOLUTION FOR SMALL VALUES OF C 
Further substitution and rearrangement re- 

Consider the following transformation Of 
suits in three sets of ordinary differential 

functions and variables 
equations wi* tl as the variable 

2f’b’ + fbf;;’ = 0 

1 (2ja)eb: + j-be0 = 0 

o=k--R)(z)+ / fo(0) = fb(0) = f:(O) = 0; fb’(cc) = 1 (16) 

e,(o) = i ; eo(oo) = 0 I 

I 
(5) 2f p + .I-i-Jf;” - f6.f;’ + 2fb’lfi 

+(qf~-2fo+2)f;;‘=0 

(2b)e;I + fbe; - f;;e, 

+ 2(f; + qfb/2 - fo + l/a) eo = 0 (1’) 

- TI). _/r(O) = f;(o) = f;‘(O) = 0; f;‘(a) = 0 
i 

Substitution of (5) into (l), (2) and (3) results 
e,(o) = 0; e,(o0) = 0 J 

in the following partial differential equations 2f;’ + fbf; - 2f;f; + 3f;;lf2 1 
u*((ue - r/u,*) + u*u,* * + 2rl.c; + qj-; + ?fb - fo + 1) f;” 

( 

CI 

> 

-(f;’ + rlfb’)f;’ + 3rlfb’lf; - 3fb’Lf, = 0 

=2 G+l+rVn?* (@ (z/a)e; + j-be; - 2f;e, + 2rlf7;/a 
~(18) 

5 + 2(Yl + ?fb - fo + l/a)@1 
c;uf - VIA:: + 0; + - 

1 + &I 
?I* = 0 (‘) -(f;’ + qfg)e, + 3(f2 + tlf; - s,)ob = 0 

f20 =fW) = 0; f;(m) = 0 

e,(o) = 0; e,(a) = 0. 
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It should be noted here that the procedure 
above is different from that given by Seban and 
Bond. The difference arises from the choice of q 
in equations (5) which does not allow an a priori 
definition of a stream function. The only 
advantage of the above procedure is the 
convenience in the presentation of the profiles. 

Equations (16-18) were solved numerically 
using a procedure which provided consistent 
truncation errors of the order of 10m7. Figure 1 
shows plots off:, f;’ and f; and Figure 2 shows 
%,, %i and e2 plotted for Prandtl numbers 0.7 
and 10. For Prandtl number of unity 8’s are 
directly related to f’s as 

8, = 1 - j-b’ 

81 = - f;’ 
8, = - f; ? 

FIG. 1. Velocity functions. 
which may be deduced from the analogy 
between velocity and temperature distributions 

8 = 1 - u*, (T = 1. (19) 

The initial conditions resulting from the solution 
of (16-18) are listed in Table 1. According to I.2 

Kelly [3], j’;‘(O) and f;‘(O) are 0497 and -0.638 
respectively. The latter was quoted incorrectly 0.8 

as - 0+797 in reference [7]. The initial condition 
for Blausius profile is given with eight places 0.4 

which may be of value for future work (a more 
accurate procedure was used here). 0 

The skin friction 7 and the heat flux q may 
now be expressed as, -0.4 

tR 
- = i{f6’(0) f <f;“(O) + pf;(o) + ..‘> 

-0.8 

PU r 7) 
(20) FIG. 2. Temperature functions. 

Table 1 

0 f 80) f;“(O) f;(O) @b(O) 8;(O) B;(O) 

0.7 0.33205733 069432 - 065658 -0.29268 -0-66364 0.62688 
1 0.33205733 0.69432 -0.65658 -0.332n6 - 0.69432 0.65658 

10 0.33205733 0.69432 - 0.65658 -0.72814 - 1.01761 1.12404 
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(26) 

+ t2e2(o) + . }. (21) 
Here p is the viscosity and k the thermal con- 
ductivity of the fluid. If these quantities are now 
normalized with respect to their corresponding 
flat plate values (zero curvature), the following 
expressions result 

z/zg = 1 + [f;“(O)lfb”(O)l 5 
+ [f;‘(O)/fb”(O)] t2 + . . . . (22) 

4/&l = 1 + uww%m 5 
+ [e;(o)/eb(o)] t2 + . . . . (23) 

The right of (22) is only a function of 5 but the 
right of (23) is a function of (T as well as r. The 
other quantity of interest is the true displacement 
thickness 6 as defined by Kelly. 

6/R = <{1*7208 - 1*4088< 

+ 4.1052t2 + . . . >. (24) 

The limits which lead to (24) are as follows : 

lim (q - fb) = 1.7207876 

yiz(/; - n2/2 + ylfb -fO) = -0.071716 (25) 
4+m 

lim (f2 + qf; - fi) = - 1.6809. : 
tl-m 

4. THE ASYMPTOTIC SOLUTION 

Now we seek solutions for very large values 
of 5 where the thicknesses of the layers are many 
times greater than the cylinder radius. For 
large values of 5, the use of transformation (5) 
is inconvenient and therefore a different set of 
functions and variables are introduced. 

Ur2 

z=4vx 

u=‘uaF 
2 az 

The expression for v in (26) is chosen such that 
(2) is identically satisfied. Further substitution 
reduces (1) and (3) to the following forms : 

zF,,, + (1 + +F + +FB) F,, - +F,F,, = 0 

(l/o)zt,, + (l/a + +F + +F,) t, - $F,t, = 0 
(27) 

(28) 

Subject to the boundary conditions 

F(ee8, /?) = F,(ee8, /?) = Fs(em8, /?) = 0 

Fz(m, B) = 2 (29) 

t(emB, j?) = 0; t(a, 8) = 2 1 

We will now consider an expansion of the form 

F(z, P) = F,(z) + B- ’ F,(z) 

+ p-” F2(z) + ... (30) 

r(z, B) = r,(z) + B- 1 tA4 

+ jr’ t2(z) + .‘. . (31) 

Substitution of (30) and (3 1) in (27) and (28), and 
neglecting terms of the order of fl-” results in 
the following set of ordinary differential equa- 
tions : 

zF;;’ + (1 + fF,) F; = 0 (32) 

(l/a)zt”, + (l/a + ;F,) tb = 0 (33) 

zF;” + (1 + +F,) F;’ + +F;;F, = 0 (34) 

(l/a)zt; + (l/a + +F,) t; + ;F,tb = 0 (35) 

zF;” + (1 + +F,) F;’ + +F;;F, + $F,F;’ 

- ~F,F; + &F~ = 0 (36) 

(l/o)zt;’ + (l/a + fF,) t; + +F,t; 

+ )F2tb + +F& - ;F,tb = 0. (37) 

Inspection of boundary conditions (29) reveals 
that these cannot be satisfied term by term and 
at the same time each term of the series be a 
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function of z alone. The boundary conditions 
will then be only approximately satisfied with an 
error of the order of eWB as follows. Referring 
to equations (32-37) and considering that near 
the wall (z + e- 8, F,,, F,, F,, etc., all approach 
zero, we can see that F:, and t. are all of the form 

t, = 2Ei(-az) (49) 

t, = -2(0 + 2)El(-az) - 2(1 + 0) 

x Ei[-(1 + a)~] + 2e-“‘Ei(-z) 

- 2aEi( - z) Ei( - az) + 2( 1 + a) Ei( - az) log z 

+2[2y + 2loga + (1 + y)a]Ei(-az) 
z 

+ 20 
s 

Ei(-gA)$di, (50) 
m 

F:, ‘v B, + C,iogz (38) 

Gl v b, + c,, log z, n=0,1,2 ,.... (39) 

Relations may be found among the coefficients 
b,, cm B, and C, by satisfying at z = e-@ the where, 

conditions Z 

Ei(-z) = 
s 

ydl 

m 

f t,/rn = 0. (41) 
n=O EZ(-z) = 

Equation (40) together with (38) leads to the m 
following relations : 

co =o; C, = B,_,. (42) 

Similarly (41) and (39) require that 

co = 0; c, = b,_,. (43) 

Solution of (32) subject to the boundary 
condition Fb( x) = 2 is simply, 

and y = 0.5772157.. . . 
In deriving expressions (47-50) the following 

limits were used for the functions involved as 
z + 0, 

Ei(-z) N y + logz (51) 

W-4 - 2 + $(y + logzj2 (52) 

x [;+log(.z+j -&a) (53) 

where 

FL = B, = 2; F, = 22 (44) 
e 

and similarly, 
to = b. = 2. (45) 

Ei(-ol)ydl N (y + logz) 

Having satisfied (40) and (41) near the wall, we 
only have to satisfy conditions for z + a on 
each of F:, and r, to be zero. For n 2 1 the differ- 
ential equations are linear and may be solved 
analytically in terms of an arbitrary constant. 
These constants are then determined by com- 
paring (38) and (39) with the limits of these 
solutions as z + 0. These solutions are as 
follows 

F; = 2Ei(-z) (4) 

F, = 2[zEi(-z) + em2 - l] (47) 

F; = 2e-“Ei( - z) - 4Ei( - 22) - [Ei( - z)]’ 

+ 4Ei( - z) log z - 6EZ( - z) + 2(1 + 3~) 

x Ei(-z) (48) coeffkients C, B, c, and b, as follows 

s(a) = 
* (-1) 

c 
--$- an, CT<1 (54) 

PI=1 

g(u) = - &log 0)2 - ; - 
m t-1)” 

c 

-n 

n,a ’ 

n=l 

CJ 2 1. (55) 

The above procedure uniquely determines the 
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b, = c2 = 2(y + log 6) 

b2=c,=2y2-(l+o); 

-2(1 + a)log(l + a) + (2 - a) 

x (log fJ)2 + 2(2y + 6) log d - 20g(o). J 

The skin friction and heat transfer may now be 
expressed as 

(57) 

(58) 

Expression (54) for g(a) was arrived at by direct 
manipulation of the integral on the left-hand 
side of (53). Expression (55) results if the same 
sort of manipulation follows integration by 
parts. Before (55) was deduced, we attempted to 
extend the convergence of series (54) to values 
of 17 > 1. Series (54) was transformed to the 
following asymptotic series 

where 

n 

A,=(n- l)! 
c 

(-1)” 
m”[(n - m)!][(m - l)!] (60) 

m=l 

and 41, is the remainder of the series. 
Equation (59) as an infinite series is of course 

divergent for all CT # 0, however, when truncated 
it gives reasonable approximations to g(u) as 

long as d is not too large. It turned out never- 
theless that the accuracy for CT = 10 was not 
adequate. For instance (59) with fourteen terms 
gives the values of - 0605, - 0.822 and - 3.73 
for CJ = 0.7, 1 and 10 respectively-the exact 
values being -0.605, -0.822 and - 4.20 to 
three significant digits. 

5. JOINING OF THE TWO SOLUTIONS 

Solutions given in Section 3 are limited to very 
small values of 5 and those given in Section 4 
are only valid for very large values t. We will 
attempt here to provide information for the 
intermediate values of < by utilizing a matching 
technique. Although, strictly speaking, joining 
of profiles is possible, it involves a tedious 
process leading to expressions too lengthy 
to be of much value. We will therefore confine 
this section to joining of skin friction and heat 
transfer. 

We will start by rewriting expression (22) for 
the normalized skin friction which is independ- 
ent of Prandtl number 

r/r0 = 1 + <{2G9096 - l-977315 + . . . >. 

(61) 

We then cast the bracket in (61), using 
Euler’s transformation, into the form 

T/Q = 1 

+ 5 
I 

r 2.09096 - 1*97731__ 
1+5+ ..’ . 1 

(62) 

If the first few coefficients of the series (62) differ 
from 2, in absolute value, only slightly (a pure 
conjecture at this point) then for small and 
intermediate values of 5, (62) may be approxi- 
mated by 

T/G - 
1 + 45 + 252 

1+25 * 
(63) 

Expression (63) is now used only as a guide for 
casting (61) into a fraction of the form 

T/Q = 
1 + a< + bt2 - cc3 

1+25 * WI 
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Coefficients a and b are then determined from 
(61) and c is to be found by matching with the 
asymptotic expression at an appropriate value 
of 5 = &,,. We use the same procedure for the 
heat flux. 

4hcl = 
1 + al + b<’ - ct3 

1+2g ’ 
t G 5, (65) 

Table 2 shows the values of a, b, c, &,, and also 
g(c) for various values of 0. The values of the 
coefficients for skin friction are identical to 
those for heat flux for Prandtl number of unity. 

The foregoing procedure, we feel, is self con- 
sistent. The small values obtained for c co- 
efficients indicate that the extrapolation of the 
small -[ solution by means of fractions is a 
reasonable one. Indeed expression (65) with c set 
equal to zero predicts the heat flux ratios with 
errors of less than 30 per cent. Although no 
matching of the slopes was imposed, the 
approach of the two solutions is rather smooth. 
An alternative method of joining would have 
been to match the slopes at 5 = 5, and thus 
determine the coefficient multiplying l in the 
denominator of fraction (65)-this was taken 
to be 2 based on fraction (63). The derivative of 
the asymptotic heat flux ratio with respect to 5, 
however, isgiven with much lessaccuracy than the 
function itself. The maximum error of the joined 
solutions should occur somewhere near t = &,,. 
Equation (65) would therefore slightly under- 
estimate the heat flux for Prandtl numbers 07 
and 1; for Prandtl number of 10, however, (65) 
would slightly overestimate the heat flux near 
5 = 5, because of its slight change of curvature. 

Figure 3 shows a plot of the local heat flux 
ratio for two Prandtl numbers. The ratio of 
average heat flux is also given in Fig. 4. The heat 

flux ratios for Prandtl number of unity which 
are identical to those of the skin friction would 
plot just below the curves for rr = 0.7. To give 
an idea of the extent of curvature present in the 
flow, the values of 6/R are also indicated in 
Figs. 3 and 4. It is interesting to note that 
equation (65) with its simple form is probably 
all that one would ever need in a practical case. 

6. THE PROFILES 

The small -5 solution provides expressions 
for temperature and velocity profiles. These 
expressions, however, are not valid beyond 
5 = 0.05. The reason is that the rate of con- 
vergence of series (1612) is a function of q. 
Although convergence near the wall and near 
the edge of the layer is fairly good, in the middle 
of the layer it is indeed poor. Extrapolation of 
the profiles by casting the series into fractions 
demonstrates the same trend. The asymptotic 
solution also provides expressions for the pro- 
files but only in terms of z. Although the 
asymptotic expressions may be written in terms 
of q, the evaluation of the asymptotic profiles 
would require laborious numerical evaluation 
of the integrals involved. 

In view of these difficulties, the most con- 
venient method for finding the profiles was felt 
to be a finite difference technique. Hence, 
equations (6-9) were written in finite difference 
forms with initial conditions (at 5 = 001) 
specified by equations (10-12). The mesh struc- 
ture was uniform in the g-direction (A< = 0.002) 
but in the q-direction A? = O-025 from r] = 0 to 
q = 1 and 81 = 0.2 from rl = 1 to q = 7. The 
value of 7 for 9 was used as the effective infinity. 
The program was run up to r = 4 for Prandtl 

Table 2 

0.7 4.26746 2.39306 0.06130 9 060516 
1 4.09096 2.20462 0.05164 10 0.82247 = ~=I12 

10 3.39755 1.25138 0.01650 20 4.19828 
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FIG. 3. Local heat flux ratio. 
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FIG. 4. Average heat flux ratio. 
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FIG. 5. Velocity profiles. 

numbers of 0.7 and 10. The velocity profiles are 
given in Fig. 5 for three values of <. The curves 
< = 0 correspond to the Blausius profiles (no 
curvature). The effect of transverse curvature 
on u* is, as expected,a reduction of the boundary- 
layer thickness. Higher values of 5 would simply 
shift the u* profiles more and more to the left 
so that as l-+ GO, u*, as a first approximation, 
is uniform throughout the layer (except at the 
wall q = 0). The a* profiles show that introduc- 
tion of curvature changes the flat plate be- 
haviour. The profiles peak in the middle of the 
layer and eventually die out as q -+ co. The 

maximum value of u* diminishes rapidly with 
increasing curvature so that again as < --f co, 
u* = 0 to a first approximation. 

The temperature profiles for Prandtl number 
of unity are expressed as (1 - u*) and for Prandtl 
number of 0.7 they are very much similar to 

(1 - u*) therefore in Fig. 6 we only plot the 
profiles for 0 = 10. 

It should be noted here that the heat flux 
results obtained from the finite difference 
solution agreed with (65) to at least three signifi- 
cant digits for CJ = 0.7 and 1 and, to at least two 
significant digits for 0 = 10. 
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R&nun&On a analyst le probltme de la couche limite laminaire et du transport de chaleur sur un long 
cylindre mince dans un 6coulement uniforme. Des solutions ont ttC obtenues aussi bien pour de petites 
que pour de grandes valeurs du parambtre de courbure. Les solutions valables pour de petites valeurs 
de la courbure sont &endues pour s’appliquer tgalement aux valeurs intermkdiaires de la courbure. Ceci 
est obtenu en mettant les expressions sous forme de fractions. Finalement, ces fractions sont ajusttes a 
la solution asymptotique afm de fournir des resultats de transport de chaleur et de frottement pour toutes 
les valeurs du parametre de courbure. Les profils de vitesse et de temptrature sont donnes sous forme de 

graphiques. 

Zuanmnenfaasung-Das Problem der laminaren Grenzschichtstromung und des Wlrmetibergangs an 
einem langen dtinnen Zylinder bei gleichmlssiger Striimung wurde analysiert. Losungen wurden sowohl 
fiir kleine als such grosse Werte des Krtimmungsparameters erhalten. Die ftir kleine Krtimmungswerte 
geltenden Losungen werden erweitert, urn such ftir mittlere Krtimmungswerte anwendbar zu sein. Dies 
geschieht durch Aufgliederung der Ausdriicke in Teillosungen. Diese Teilliisungen werden schliesslich 
mit der asymptotischen Losung zusammengefasst, urn Ergebnisse fur den Warmeiibergang und die 
Wandreibung bei allen Werten des Krtimmungsparameters zu liefern. Die Formen der Geschwindigkeits- 

und Temperaturprotile sind graphisch wiedergegeben. 

Amomqm-IIpoaHanaanposaHa aaflasa TeqeHm II TaHnOO6MoHa namiHapHor0 norpaanw 

HOrO CJIOR npa 06TCHaHHH gJHiHHOr0 TOHKOrO IHiJlUHApa paBHOMCpHblM nOTOKOM. DOny’if?HbI 
peluemifl AJIH Manblx n 6onbmux aHasemil napaMeTpa KpkiBnaHn. Pemenrin Ann hranhlx 
atraqerintl Kpesuam pacnpocTpaHenbl Tarme Ha npohfeHcyTosHbIe ana9eHm. &m a~oro 
BbIpaHteHIlR paa6tfBamTCfi Ha SacTu. 3aTeM ~nrr ~TPX gamei cocTaBmeTcR acminTom9ecKoe 

pemeHUC Anfl nOJryHeHMR AaHHrJX n0 TeHnOO6MeHy H nOBepXHOCTHOMy TpeHUK, AJHI BCeX 
aHaseHr&i rtpesriaHbr. IIP~HIOAHTCH rpa$mwa pacnpeAeneHwfl cHopocTefi M TeMnepaTyp. 


